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Physics motivation
Quark Gluon Plasma (QGP) state
Experiments at Relativistic Heavy-Ion 
Collider (RHIC) created QGP in Au+Au 
at 200GeV per nucleon and theoretical 
calculations (e.g hydrodynamics 
model) are describing the QGP state 
quantitatively in terms of:
● how hot and dense the matter is
● how opaque the matter is against jets
● how strongly the matter is coupled

Question: How fast the extremely hot and dense matter therm
alizes and freezes-out, how much the system size grows, what 
is the nature of the phase transition that occurs at RHIC? Is it 
different from AGS, SPS energies?
What are the nature parameters to describe the state?
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Space-time evolution
initial state pre-equilibrium QGP and 

hydrodynamic
expansion

hadronization
hadroninc phase and

kinetic freeze-out

Study charge-asymmetry
(P-odd Domains)

➢ Search for the critical end point. 
Study the critical behavior, phase 
boundary, transition order.

Fluctuationk ,ξ etc.

➢ Study expansion dynamics 
and space-time extent  

Spectra, Femtoscopy

τ , Ro , s , l ,η ,T f etc.
Y

X

➢ Study how matter 
expands/flows under its 
own pressure?

η ,ξ , cs ,T f

Flow
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FlowsFlows
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v2 and v4 in Au+Au 200GeV

High precision double differential 
Measurements are pervasive

Ideal hydro

Phys. Rev. Lett. 105, 062301 (2010)

●  v4/(v2)2 is independent of centrality.
●  v4/(v2)2 is ~0.8 for Npart<200, which 

is larger than the ideal hydro (~0.5).
●  Adding an eccentricity fluctuation 

and small viscosity well reproduces 
the data (need an additional 
fluctuation for central collision).
Estimate → 4π(η/s) ~ 1-2
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Scaling property of PID v2

➢v2 are consistent between mesons, or baryons as a function of 
KET (= MT - M0) 

➢Universal quark scaling works fine up to KET/nq ~ 1 GeV but 
deviate at higher KET region.
 Mechanism could be changed from soft to hard process.
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Energy dependence of v2

Phys.Rev.Lett.94:232302,2005

● v2 is saturated and flat at 39 GeV to 200 
GeV in Au+Au collisions.

● v2 at 7.7 GeV is lower than 39 GeV 
(partonic → hadronic flow?) 

● Next step will be to investigate the universal 
scaling of v2 (KET/nq) at the lower energies.
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Scaling, energy dependence of v4

➢v4 also flow the KET/nq scaling

➢v4 is less varied in Au+Au collision energy from 39 to 200 GeV
 v4 is also saturated at 39 GeV.

PHENIX preliminary 
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v4/(v2)2

➢v4/(v2)2 is sensitive to hydrodynamics freeze-
out temperature, viscosity.

➢v4/(v2)2 is flat as a function of pT, and similar 
from 39 GeV to 200 GeV at different Npart in 
Au+Au collisions
 Hydrodynamics paremeters (freeze-out temperature, η/s) 

don't change between the energy region. 
M. Luzum, C. Gombeaud, Y. 
Ollitrault, PRC.81.054910
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v3
● v3 could be observed if the overlapped 
nuclei is not perfectly elliptical shape.

● v3 measured with large η gap (bulk effect 
only) shows a good agreement with hydro 
calculation.

● Ridge sits at ΔΦ ~ 0, shoulder 
sits at ΔΦ~2π/3, 4π/3.
A 3-peak structure!

●  v3 (Fourier Coefficient of the 
cos3ΔΦ term) gives a natural 
3-peak structure

small η gap, 
bulk + jet + ?

large η gap, 
bulk flow only

ridge shoulder
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FluctuationsFluctuations
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Multiplicity fluctuation

Au+Au 200GeV Au+Au 62.4GeV Cu+Cu 62.4GeV Cu+Cu 22.4GeV

p+p 200GeV

P (n)=
Γ(n+k NBD)

Γ(n+1)Γ(k NBD)
(μch /k NBD)

n

(1+μch /k NBD)
n+k NBD

Multiplicity distribution is well described by the 
negative binomial distribution (NBD).

1
k NBD

=
σch

2

μch
2 − 1

μch

μch : Average multiplicity

1/kNBD : Deviation from
             Poison distribution

Phys. Rev. C 78, 044902 (2008)

σch
2

μch
= ωN =

k NBD
μch +1
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Multiplicity fluctuation

➢Near the critical point, the multiplicity fluctuations should exceed the 
superposition model expectation.
 No significant evidence for critical behavior is observed.

Phys. Rev. C 78, 044902 (2008)

ωch =
σch

2

μch
=
k NBD
μch +1“scaled variance”
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Mean pT fluctuation
➢  ΣpT is the mean of the 

covariance of all particle pairs 
in an event normalized by the 
inclusive mean pT.
 Can be related to the inverse of the 

heat capacity.

 Random fluctuation: ΣpT = 0

➢The magnitude of ΣpT is less 
changed from Cu+Cu 22.4 
GeV up to Au+Au 200 GeV.
 All data can be expressed by the 

power row function of Npart.Σ pT
∝N part

−1.02±0.10
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Local parity violation

Signal grows with centrality and pT, which 
agrees with STAR's result.

It has been proposed that in 
heavy ion collisions, a 
combination of a net chirality of 
quarks within a domain and the 
extremely strong magnetic field 
could lead to  the manifestation 
of parity violation as a 
separation of charges along the 
angular momentum vector of the 
collision system.
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Femtoscopy (aka HBT)Femtoscopy (aka HBT)
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Energy versus HBT radius

Rside, Rlong are scaled well 
with multiplicity dN/dy 

rather than Npart.

Rout is not scaled with dN/dy 
from AGS to SPS energy.

Emission duration is 
significantly changed from AGS 

to SPS?

Nature of phase transition 
could be changed at 
energy between AGS to 
SPS region. Detailed 
studies by energy scan is 
being performed at RHIC.

Nature of phase transition 
could be changed at 
energy between AGS to 
SPS region. Detailed 
studies by energy scan is 
being performed at RHIC.

M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann
Ann.Rev.Nucl.Part.Sci.55:357-402,2005
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Corrective flow in p+p?
➢Charged pion HBT transverse radius 

(Rside) measured in p+p collisions 
also show the mT  dependence.

 Collective flow in p+p collision??

➢Recent analysis by ALICE showed 
less pT dependence after subtracting 
non-flat baseline. 

Rout

Rlong

Rside

Rout/Rside

λ
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HBT-imaging analysis

➢ The result shows a non-Gaussian structure in kaon emission function, as well as 
pion. Systematic errors are still big and we need to study with high statistics data.

➢ The magnitude of anomalous diffusion depends on particle's mean free path. 
Kaon has the smallest cross-section among pi, K, p, therefore shows the largest 
exponential tail.

PHENIX, Phys. Rev. Lett. 103, 142301 (2009) M. Csanád, T. Csörgő and M. Nagy, hep-hp/0702032
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SpectraSpectra
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ET spectra (WNM vs AQM?)

➢ PHENIX ET measurement showed the 
AQM works in Au+Au at 62.4-200 
GeV.

 AQM works for √sNN > ~20 GeV

 WNM works for √sNN < ~20 GeV

➢ A systematic study using lower 
collision energy, smaller system data 
is on-going to investigate the onset of 
the transition.

Z. Phys. C 35, 209214 (1987), T. Ochiai

ISR, √sNN=31GeV

PHENIX preliminary
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PID spectra 

PHENIX collaboration, arXiv:1102.0753
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RAA

➢Pion suppression is observed in Au+Au and Cu+Cu at 62.4 GeV

➢Proton is enhanced, and the enhancement is most magnified in 
Cu+Cu at 22.4 GeV
 Baryon transport in the mid-rapidity

➢Anti-proton is less sensitive to the collision system/energy for 
Au+Au/Cu+Cu at 22.4 – 62.4 GeV.

PHENIX
preliminary

PHENIX
preliminary

PHENIX
preliminary
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Summary
➢Large amount of data in Au+Au at 200GeV allowed us to 

investigate and deliver the detailed picture of space-time 
evolution of HI collisions through soft observables.

➢Observables are well consistent (or linearly scaled) between 
Au+Au/Cu+Cu 39 ~ 200 GeV data, but not for the lower energies 
(Au+Au 7.7 GeV and Cu+Cu 22.4 GeV).

➢So far, no significant sign of the critical point has been observed 
through fluctuation measurements with the available data sets.

➢More PHENIX results with low-energy data sets describing the 
onset of the transition between quark and hadronic pictures will 
be coming out soon!
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HBT-λ

➢ In hot medium η' mass could be reduced to quark model mass due to 
UA(1) symmetry restoration mass, resulting in enhancement of mass 
of η' production (decrease of HBT-λ) at low pT.

➢  Reliable data missing mainly at low mT

  Not enough restrictive on hadron production models

  High precision low-pT HBT measurements will change this!



  29

Susceptibility

k−1(δ η)=2α ξ 2(δ η /ξ−1+e−δη /ξ )
δη 2 +β

Non-monotonic increase of αξ indicates T~Tc 
w.r.t. monotonically decreasing baseline as 
mean density μ increases.

αξ measured in Au+Au 200 GeV indicates 
non-monotonic behavior around Npart~90.

PHENIX collaboration, Phys. Rev. C 76, 034903 (2007) 
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Fourier spectra of Jet Function

➢No significant contribution above C4

➢Removing the away side pp enhances the C-odd terms

➢The C3 in AuAu has contributions from both jet and bulk
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